

Platinum(II) Chloride-Catalyzed Stereoselective **Domino Envne Isomerization/Diels-Alder Reaction**

Mathias Schelwies, Andreas Farwick, Frank Rominger, and Günter Helmchen*

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

g.helmchen@oci.uni-heidelberg.de

Received July 26, 2010

Chiral 1,6-envnes were prepared via Ir-catalyzed allylic substitutions. Their platinum(II) chloride-catalyzed domino enyne isomerization/Diels-Alder reaction provided stereoselective access to complex heterocycles. Very high diastereoselectivity was induced by a chirality center of the envne.

Isomerization reactions of 1,6-enynes, readily inducible by transition metal complexes, offer access to a broad range of dienes.¹ The reaction course varies with the transition metal catalyst and the substituents of the 1,6-envne. Our objective was a chemoselective envne isomerization leading to a 1,3-diene in the presence of a dienophile in order to achieve a stereoselective Diels-Alder reaction in domino² fashion (Scheme 1).

SCHEME 1. Domino Envne Isomerization/Diels-Alder Reaction

Consecutive sequences of enyne metathesis, using Grubbstype catalysts, and Diels-Alder reaction have been reported.³ Gênet et al. accomplished interesting substratecontrolled diastereoselective reactions in a sequential

DOI: 10.1021/jo1014068 © 2010 American Chemical Society Published on Web 10/19/2010

one pot, not a domino manner,^{3a} i.e. by addition of the dienophile after complete formation of the diene. Domino sequences were accomplished by Bentz and Laschat^{3b} for Diels-Alder reactions at room temperature in the presence of stoichiometric amounts of BCl₃. We wondered whether the domino sequence could be accomplished for thermal Diels-Alder reactions, which would often require temperatures not tolerated by Grubbs-type catalysts. We have now found that this is possible with platinum(II) chloride as a thermally stable catalyst. Thermal Diels-Alder reactions could be carried out at 110 °C (refluxing toluene) with a high degree of diastereoselectivity. In addition, we herein describe the synthesis of a new class of chiral, 5-substituted envnes that allows diastereoselective Diels-Alder reactions to give complex tricyclic heterocycles of potential interest for medicinal chemistry.

In the exploratory work, the chiral 1,6-enynes $3a^4$ and 3bwere chosen as substrates. These compounds were prepared from cinnamyl methyl carbonate (1) with high enantiomeric purity (97.5–98.5% ee) by asymmetric Ir-catalyzed allylic substitution and subsequent alkylation with propargyl bromide (Scheme 2).⁵ Then catalysts for the enyne isomerization were screened using **3a** as substrate (Table 1).

Despite phenomenologically similar reactivity toward 1,6envnes, the catalysts differ in substrate specificity, reaction mechanism, and required reaction conditions.^{1b} The Grubbs catalysts I and II did not lead to complete conversion of enyne 3a to diene 4. This has previously been observed for other monosubstituted alkynes.⁶ Better results were ob-tained with PtCl₂,⁷ FeCl₃,⁸ and [Au(PPh₃)Cl]/AgSbF₆⁹ as catalysts. The catalyst Ph₃PAuCl/AgSbF₆, displaying the highest activity, was not compatible with dienophiles at high temperatures, i.e. product mixtures were formed. As best suited catalyst, PtCl₂ was identified, which induced high yields and is thermally stable as is necessary for most Diels-Alder reactions. This catalyst had already found application as an enyne isomerization catalyst in total synthesis.7,10

For the domino reaction to yield cycloadducts 5, a solution of the envne, a dienophile and PtCl₂ in toluene was heated at reflux (Table 2). A single diastereoisomer was obtained in all cases. HPLC analysis of the crude products showed complete conservation of enantiomeric purity.

(7) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996, 15, 901-903.

^{(1) (}a) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215-236. (b) Lee, S. I.; Chatani, N. Chem. Commun. 2008, 371-384. (c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317-1382.

⁽²⁾ Tietze, L. F. Chem. Rev. 1996, 96, 115-136.

^{(3) (}a) Desroy, N.; Robert-Peillard, F.; Toueg, J.; Hénaut, C.; Duboc, R.; Rager, M.-N.; Savignac, M.; Gênet, J.-P. *Synthesis* **2004**, 2665–2672. (b) Bentz, D.; Laschat, S. Synthesis 2000, 1766-1773. (c) Rosillo, M.; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. J. Org. Chem. 2004, 69, 2084-2093. (d) Lee, H.-Y.; Kim, H. Y.; Tae, H.; Kim, B. G.; Lee, J. Org. Lett. 2003, 5, 3439-3442.

⁽⁴⁾ Schelwies, M.; Moser, R.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Chem.-Eur. J. 2009, 15, 10888-10900.

^{(5) (}a) Lipowsky, G.; Miller, N.; Helmchen, G. *Angew. Chem., Int. Ed.* **2004**, *43*, 4595–4597. (b) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675-691. (c) Streiff, S.; Welter, C.; Schelwies, M.; Lipowsky, G.; Miller, N.; Helmchen, G. Chem. Commun. 2005, 2957-2959.

⁽⁶⁾ Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998, 63, 6082-6083.

⁽⁸⁾ Nieto-Oberhuber, C.; Muñoz, M. P.; López, S.; Jiménez-Núñez, E.; Nevado, C.; Herrero-Gómez, E.; Raducan, M.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1677-1693.

⁽⁹⁾ Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402-2406.

⁽¹⁰⁾ Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305-8314.

SCHEME 2. Ir-Catalyzed Allylic Substitution-Propargylation Sequence

TABLE 1. Catalyst Screening for the Enyne Isomerization of 3a

MeO ₂ C, MeO ₂ C		catalys solvent	t (5 mol% (0.1 M)	→ MeO ₂ C, MeO ₂ C	
	Ph			Ph	4
entry ^a	catalyst	solvent	temp. (°C)	conversion/ time	yield (%)
1 2	Grubbs' I Grubbs' II	$\begin{array}{c} CH_2Cl_2\\ CH_2Cl_2 \end{array}$	rflx rflx	14%, ^b 2 d 33%, ^b 2 d	
3 4	PtCl ₂ Ph ₃ PAuCl/ AgSbF ₆	toluene CH ₂ Cl ₂	80 rt	full, $c 3 h$ full, $c < 1 h$	90 74
5	FeCl ₃	toluene	80	incomplete, ^c 26 h	66
^a All 0.5 mm	reactions were ol scale. ^b Dete	e carried o rmined by	out under GC. ^c Det	an argon atmosphermined by TLC.	ere on a

Isolated yields were good with *N*-phenylmaleimide and tetracyanoethylene as dienophiles and moderate otherwise. Considering the complexity of this multistep transformation, even yields on the order of 40% are satisfactory.

The relative configurations of the products were determined for **5a**, **5d**, and **5e** by crystal structure analyses.¹¹ Accordingly, the Diels-Alder reaction proceeded via *endo* addition at the less hindered face of the diene moiety (Figure 1).

FIGURE 1. Endo $[4\pi s + 2\pi s]$ transition state.

In conclusion, we are reporting a PtCl₂-catalyzed domino enyne isomerization/Diels-Alder reaction that offers access to highly enantioenriched complex heterocycles.

Experimental Section

General Procedure for the PtCl₂-Catalyzed Enyne Isomerization Diels-Alder Reaction: (-)-Dimethyl (3a*R*,8*R*,8a*R*,8b*S*)-1,3-Dioxo-2,8-diphenyl-2,3,3a,4,6,8,8a,8b-octahydrocyclopenta-[*e*]isoindole-7,7(1*H*) Dicarboxylate (5a). A solution of (-)-(*R*)-3a (97.5% ee, 286 mg, 1.0 mmol) and *N*-phenylmaleimide (346 mg,

^{*a*}The yield of **5a** upon use of isolated, pure **4** was 69%.

2.0 mmol) in toluene (2 mL) was treated with PtCl₂ (13.3 mg, 50 μ mol), and the resulting solution was heated at reflux until after 2 h TLC control [petroleum ether/ethyl acetate, 3:1, R_f (**3a**) = 0.37, R_f (**5a**) = 0.10, KMnO₄] indicated complete consumption of **3a**. The reaction mixture was filtered through Celite, and this was washed with CH₂Cl₂ (50 mL). The solvent was removed, and the

⁽¹¹⁾ CCDC-756790 (5a), CCDC-765791 (5d), and CCDC-765792 (5e) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

residue was subjected to flash chromatography on silica gel (30 g, petroleum ether/ethyl acetate, 3:1) to yield **5a** as a slightly yellow foam, which was dissolved in hot ethanol (10 mL). Upon cooling to room temperature, crystallization occurred. After washing of the crystals with cold *n*-hexane (–)-(3a*R*,8*R*,8a*R*,8b*S*)-**5a** (283 mg, 62%) was obtained as colorless and analytically pure needles (mp 165–167 °C). The structure of the compound was confirmed by X-ray crystal structure analysis. $[\alpha]_D^{20} = -148$, (c = 0.42, MeOH, 97.5% ee according to starting material); ¹H NMR (CDCl₃, 300.13 MHz) $\delta = 2.32-2.43$ (m, 1 H), 2.70–2.80 (m, 1 H), 2.89 (dd, J = 15.5 Hz, J = 7.1 Hz, 1 H), 3.11-3.29 (m, 4 H), 3.47, 3.66 (2 s, 6 H), 4.74 (d, J = 11.9 Hz, 1 H), 5.81-5.86 (m, 1 H), 7.17-7.42 (m, 10 H); ¹³C NMR (CDCl₃, 75.48 MHz) $\delta = 22.6$ (t), 40.1 (t), 40.5, 41.1, 44.7 (3 d), 50.8 (d), 52.1, 52.5 (2 q), 64.2 (s), 117.1 (d), 126.6, 127.7, 128.2, 128.8, 129.2 (5 d), 132.0, 137.5, 142.2

(3 s), 171.1 (s), 171.4 (s), 176.7, 178.9 (2 s); HR-MS (EI) m/z calcd for $C_{27}H_{25}NO_6\,[M^+]\,459.1683,$ found 459.1661; elemental analysis calcd for $C_{27}H_{25}NO_6\,C$ 70.58 H 5.48 N 3.05, found C 70.66 H 5.51 N 3.07.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft (SFB 623), the Studienstiftung des deutschen Volkes (scholarship to M.S.), and the Fonds der Chemischen Industrie for financial support. We thank Olena Tverskoy for experimental assistance.

Supporting Information Available: Experimental procedures and characterization data for all new compounds and crystallographic information for **5a**, **5d**, and **5e**. This material is available free of charge via the Internet at http://pubs.acs.org.